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Using concave envelopes to globally solve the
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Abstract. This article presents a branch and bound algorithm for globally solving the nonlinear
sum of ratios problem (P). The algorithm works by globally solving a sum of ratios problem that
is equivalent to problem (P). In the algorithm, upper bounds are computed by maximizing concave
envelopes of a sum of ratios function over intersections of the feasible region of the equivalent
problem with rectangular sets. The rectangular sets are systematically subdivided as the branch
and bound search proceeds. Two versions of the algorithm, with convergence results, are
presented. Computational advantages of these algorithms are indicated, and some computational
results are given that were obtained by globally solving some sample problems with one of these
algorithms.
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1. Introduction

Consider the nonlinear sum of ratios problem
p

n (x)n i
]](P) v 5 max h(x) 5 O , subject to x [ X ,
d (x)i51 i

nwhere p > 2, n : 5 → 5 is a finite, concave function for each i 5 1, 2, . . . , p,i
nd : 5 → 5 is a finite, convex function for each i 5 1, 2, . . . , p, and X is ai

ncompact, convex (possibly empty) set in 5 . We assume also that for each
i 5 1, 2, . . . , p, l < n (x) < u and L < d (x) < U for all x [ X, where l , u , L andi i i i i i i i i

U are positive scalars that satisfy l < u and L < U , i 5 1, 2, . . . , p. Notice that ifi i i i i

L 5 U , i 5 1, 2, . . . , p, then problem (P) can be globally solved by any of a numberi i

of convex programming methods. Therefore, we assume for at least one i [
h1, 2, . . . , pj that L , U . Sums of ratios problems have attracted the interest ofi i

practitioners and researchers for at least 30 years. During the past 10 years, interest
in these problems has been especially intense. In part, this is because, from a
practical point of view, sums of ratios problems have many important applications.
Included among these are applications in areas such as transportation planning,
government contracting, economics and finance [1, 7, 18, 20, 27, 28]. In these
applications, the number of ratios summed in the objective function is usually less
than four or five. Another reason for the strong interest in sums of ratios problems is
that, from a research point of view, these problems pose significant theoretical and
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computational challenges. This is mainly because these problems are global
optimization problems, i.e., they are known to generally possess multiple local
optima that are not globally optimal [29].

During the past 35 years there has been significant progress in the development
of deterministic algorithms for finding global optimal solutions to global optimi-
zation problems [14]. During the earlier years of this research, global optimization
algorithms were developed for certain general classes of problems, including
concave minimization problems, d.c. programming problems and others [13]. More
recently, algorithms for special cases have been developed. Included among these
are a number of algorithms for globally solving sums of ratios problems. Most of
these algorithms, however, are limited to the linear case, i.e., to the case where n (x)i

and d (x) are affine functions for each i 5 1, 2, . . . , p, and X is a polyhedron [6, 9,i

16, 17, 21–23]. There are at least four notable exceptions, however. In [19], Konno
et al. develop an algorithm for sums of ratios problems in which the numerators and
denominators are affine functions and the feasible region is a compact, convex set.
In addition, three algorithms have been proposed for nonlinear sums of ratios
problems. The first, by Quesada and Grossmann [25], applies underestimating
functions in a branch and bound framework to a problem that includes problem (P)
as a special case. The second algorithm, by Dur et al. [8], converts problem (P) to a
parametric nonlinear program which is solved by branch and bound. More recently,
Freund and Jarre [11] have presented an algorithm for solving problem (P) that
works by underestimating an associated optimal value function.

One of the classic ways of solving a global optimization problem is to use a
branch and bound approach wherein bounds are obtained by solving convex or
linear programming subproblems that maximize concave envelopes or minimize
convex envelopes of the objective function over subregions of the feasible region
[14]. This approach has been successfully applied to a number of global optimi-
zation problems. Included among these, for instance, are the concave minimization
problem [2], separable concave minimization problems [5, 14], bilinear program-
ming problems [12] and concave quadratic minimization problems [15, 26].
However, with one notable exception, this approach has not been applied to the
solution of sums of ratios problems. The exception is an algorithm by Kuno [23] for
the linear sum of ratios problem. It can be shown that this algorithm uses concave
envelopes over trapezoids to generate upper bounds [3], although Kuno did not stop
to show this in his article.

In this article, we present a branch and bound algorithm for globally solving
problem (P). The algorithm works by solving a sum of ratios problem (P ) that isH

2pequivalent to problem (P), where H is a rectangle in 5 . In the algorithm, upper
bounds are obtained by maximizing concave envelopes of the objective function of
problem (P ) over subregions of its feasible region that are obtained by repeatedlyH

2psubviding H into subrectangles that belong to 5 . Two versions of the algorithm
are presented. In one version, the rectangles are subdivided by a method called
bisection of ratio a [30]. In the second version, this subdivision is accomplished by
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a method called v-subdivision [30]. In both versions, one of the important
advantages is the somewhat surprising fact that, although the branch and bound
search involves rectangles defined in a space of dimension 2p, branching takes place
in a space of only dimension p. Another key advantage is that the upper bounding
subproblems are convex programming problems that differ from one another only in
the coefficients of certain linear constraints and in the bounds that describe their
associated rectangles. The algorithms in this article were motivated by the seminal
works of Horst and Tuy [14] and Tuy [30] on using branch and bound for global
optimization, and by the recent examples of this use by Kuno [23] for linear sums of
ratios problems.

The organization of this article is as follows. In Section 2, preliminary results of
two types are presented. First, the problem (P ) equivalent to the nonlinear sum ofH

ratios problem (P) is derived. Second, concave and convex envelope functions for
the objective function of problem (P ) are given. In Section 3, a prototype branchH

and bound algorithm for globally solving problem (P ) is presented, and propertiesH

of this algorithm are delineated. Two implementations of this algorithm, with
convergence results, are presented in Section 4. Section 5 discusses some computa-
tional considerations and reports some computational results obtained by solving
some example problems with one of the implementations of the prototype algorithm.
Concluding remarks are given in the last section.

2. Preliminaries
2pLet H 5 h(t, s) [ 5 u l < t < u , L < s < U , i 5 1, 2, . . . , pj and consider thei i i i i i

sum of ratios problem

p
ti
](P ) v 5 max OH H sii51

s.t. n (x) 2 t > 0, i 5 1, 2, . . . , p ,i i

2d (x) 1 s > 0, i 5 1, 2, . . . , p ,i i

x [ X, (t, s) [ H .

n n12pNotice that the feasible region Z(H ) 5 h(x, t, s) [ 5 u n (x) 2 t > 0, i 5i i

1, 2, . . . , p, 2d (x) 1 s > 0, i 5 1, 2, . . . , p, x [ X, (t, s) [ Hj of problem (P ) is ai i H

compact, convex set, and that Z(H ) 5 5 if and only if X 5 5. To globally solve
problem (P), the branch and bound algorithm will globally solve problem (P ). TheH

validity of this approach follows from the following result.

THEOREM 1. If (x*, t*, s*) is a global optimal solution for problem (P ), thenH

* *t 5 n (x*), s 5 d (x*), i 5 1, 2, . . . , p, and x* is a global optimal solution fori i i i

problem (P). Conversely, if x* is a global optimal solution for problem (P), then
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*(x*, t*, s*) is a global optimal solution for problem (P ), where t 5 n (x*),H i i

*s 5 d (x*), i 5 1, 2, . . . , p.i i

Proof. Let (x*, t*, s*) be a global optimal solution for problem (P ). Then, forH

* *each i 5 1, 2, . . . , p, n (x*) > t > l . 0 and s > d (x*) > L . 0, i 5 1, 2, . . . , p.i i i i i i

This implies that for each i 5 1, 2, . . . , p,

*n (x*) ti i
]] ]> ,*d (x*) si i

so that

p *t i
]h(x*) > O . (1)*si51 i

ˆ ˆˆ ˆFor each i 5 1, 2, . . . , p, let t 5 n (x*) and s 5 d (x*). Then (x*, t, s ) is a feasiblei i i i

solution for problem (P ) and, in this problem, has an objective function value equalH

to h(x*). Since (x*, t*, s*) is a global optimal solution for problem (P ), this impliesH

that

p *t i
]h(x*) < O . (2)*si51 i

From (1) and (2),

p *t i
]h(x*) 5 O . (3)*si51 i

By definition of h, since, for each i 5 1, 2, . . . , p,

*n (x*) ti i * *]] ]> , n (x*) > t . 0 , s ^ d (x*) . 0 ,i i i i*d (x*) si i

* *this implies that for each i 5 1, 2, . . . , p, t 5 n (x*) and s 5 d (x*). For anyi i i i

feasible solution x for problem (P), if we set t 5 n (x) and s 5 d (x), i 5 1, 2, . . . , p,i i i i

then (x, t, s) is a feasible solution for problem (P ) and, in this problem, has anH

objective function value equal to h(x). Since (x*, t*, s*) is a global optimal solution
for problem (P ), this implies that for any feasible solution x for problem (P),H

p *t i
]h(x) < O .*si51 i

From (3), since x* [ X, this implies that x* is a global optimal solution for problem
(P).

To show the converse statement, let x* be a global optimal solution for problem
* *(P), and let t 5 n (x*) and s 5 d (x*), i 5 1, 2, . . . , p. Then (x*, t*, s*) is ai i i i

feasible solution with objective function value h(x*) in problem (P ). Let (x, t, s) beH
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a feasible solution for problem (P ). Then, for each i 5 1, 2, . . . , p, n (x) > t > l .H i i i

0 and s > d (x) > L . 0. This implies that for each i 5 1, 2, . . . , p,i i i

n (x) ti i
]] ]> ,sd (x) ii

so that

p
ti
]h(x) > O . (4)sii51

Since x [ X and x* is a global optimal solution for problem (P), h(x) < h(x*).
Together with (4), this implies that

p
ti
]h(x*) > O . (5)sii51

* *Since t 5 n (x*) and s 5 d (x*), i 5 1, 2, . . . , p,i i i i

p *t i
]O 5 h(x*) . (6)*si51 i

From (5) and (6),

p p*t ti i
] ]O > O ,* ss ii51 i51i

and the proof is complete. h

Notice that it follows immediately from Theorem 1 that v 5 v .H

To help compute upper bounds, the branch and bound method to be presented
relies upon the concept of a concave envelope, which may be defined as follows.

qDEFINITION 1 [14]. Let M # 5 be a compact, convex set, and let f : M → 5 be
Mupper semicontinuous on M. Then f : M → 5 is called the concave envelope of f

on M when
M(i) f (x) is a concave function on M,
M(ii) f (x) > f(x) for all x [ M,

M¯ ¯(iii) there is no function w(x) satisfying (i) and (ii) such that w(x ) , f (x ) for some
¯point x [ M.

The convex envelope of a function f on M is defined in a similar manner. Notice
Mthat the concave envelope f is the ‘tightest’ concave function that majorizes f on

MM. Closed-form formulas for f frequently cannot be found. But for the case of a
simple fractional function, we have the following result.
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THEOREM 2. Let
2 ¯¯RC 5 h(x , x ) [ 5 u a < x < a, b < x < b j ,1 2 1 2] ]

2¯ ¯¯ ¯where a, a, b and b are scalars satisfying a < a, b < b. For any (x , x ) [ 5 such1 2] ] ] ]
that x ± 0, let f f(x , x ) 5 x /x .2 1 2 1 2

¯¯(i) Suppose that either a, b . 0 or a, b , 0. Then the concave envelope
] ]RCf f : RC → 5 of f f on RC is given by

¯ ¯1 a a 1 a aRC ] ]] ] ] ] ] ]f f (x , x ) 5 min x 2 x 1 , x 2 x 1 .1 2 H 1 2 1 S D 2 JS D¯ ¯ ¯ ¯b bbb b b bb] ]] ]
¯¯(ii) Suppose that either a , 0, b . 0 or a . 0, b , 0. Then the convex envelope

] ]
f f : RC → 5 of f f on RC is given byRC

¯ ¯1 a a 1 a a
] ]] ] ] ] ] ]f f (x , x ) 5 max x 2 x 1 , x 2 x 1 .RC 1 2 H 1 S D 2 1 2 JS D¯ ¯ ¯ ¯b bbb b b bb] ]] ]

Proof. This result is essentially shown in Benson [3] as a corollary of a more
general result. However, to provide a self-contained presentation, and because this
result is central to this article, we provide a direct proof for (i) in the case where
a, b . 0. Proofs for the other cases are similar.
] ]

¯ ¯Assume that a, b . 0. When a 5 a, x 5a 5 a for all (x , x ) [ RC, and1 1 2] ] ] ]
f f(x , x ) 5a /x for all (x , x ) [ RC. Therefore, in this case, f f(x , x ) is a convex1 2 2 1 2 1 2]
function of one variable on a line segment, and the result easily follows from

¯Theorem IV. 7 in [14]. Therefore, assume in the remainder of the proof that a , a.
]

For each (x , x ) [ RC, let1 2

1 a a
] ]] ] ]h (x , x ) 5 x 2 x 1 .1 1 2 1 2S D¯ ¯b bb b] ]
¯ ¯1 a a

] ] ]h (x , x ) 5 x 2 x 1 .2 1 2 1 S D 2¯ ¯ bb bb ]]
RCFor (x , x ) [ RC, f f (x , x ) is defined as the minimum of h (x , x ) and1 2 1 2 1 1 2

h (x , x ). Since h (x , x ) and h (x , x ) are linear functions on RC, this implies2 1 2 1 1 2 2 1 2
RCthat f f (x , x ) is a concave function on RC.1 2

¯Suppose that (x , x ) [ RC. Then, since 0 ,a < x and 0 ,b < x < b, it follows1 2 1 2] ]
that

b̄x 2ax > 01 2]

and

x 2b > 0 .2 ]

Therefore,

¯0 < (bx 2ax )(x 2b)1 2 2] ]
2¯ ¯5 bx x 2ax 2bbx 1a bx .1 2 2 1 2] ] ] ]
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¯By dividing the right-hand side of this inequality by bbx . 0 and rearranging terms,1]
we obtain

2x x1 a a2 2] ]] ] ] ] ]x 2 1 > 1 .S D S DS D2 S D¯ ¯b x xbb b1 1] ]

By multiplying both sides of this inequality by (x /x ) . 0, it follows that1 2

h (x , x ) > f f(x , x ) .1 1 2 1 2

In a similar fashion, it can be shown that

h (x , x ) > f f(x , x ) .2 1 2 1 2

Therefore,

RCf f (x , x ) > f f(x , x )1 2 1 2

for all (x , x ) [ RC.1 2

Now suppose that w(x , x ) is a concave function on RC such that1 2

w(x , x ) > f f(x , x ) for all (x , x ) [ RC , (7)1 2 1 2 1 2

¯ ¯and, for some (x , x ) [ RC1 2

¯ ¯ ¯ ¯ ¯ ¯w(x , x ) , minhh (x , x ), h (x , x )j . (8)1 2 1 1 2 2 1 2

¯ ¯¯ ¯Denote the vertices of RC by A 5 (a, b ), B 5 (a, b ), C 5 (a, b) and D 5 (a, b).
] ] ] ]

¯ ¯ ¯ ¯Then, since (x , x ) [ RC, (x , x ) belongs either to the convex hull of hA, B, Cj or1 2 1 2

¯ ¯to the convex hull of hA, C, Dj or both. Assume that (x , x ) belongs to the convex1 2

¯ ¯hull of hA, B, Cj. The proof for the case where (x , x ) belongs to the convex hull of1 2

hA, D, Cj is similar. Then we may choose nonnegative scalars a , a and a that1 2 3

sum to 1.0 such that

¯ ¯(x , x ) 5 a A 1 a B 1 a C . (9)1 2 1 2 3

Then

¯ ¯w(x , x ) > a w(A) 1 a w(B) 1 a w(C)1 2 1 2 3

¯ ¯a a a
]] ] ]> a 1 a 1 a ,S D S DS D1 2 3¯ ¯ bb b ]

where the first inequality follows by the concavity of w on RC, and the second
inequality follows from (7). Since h (A) 5 f f(A), h (B) 5 f f(B) and h (C) 5 f f(C),2 2 2

this implies that

¯ ¯w(x , x ) > a h (A) 1 a h (B) 1 a h (C) .1 2 1 2 2 2 3 2

By (9) and the linearity of h (x , x ), this implies that2 1 2

¯ ¯ ¯ ¯w(x , x ) > h (x , x ) . (10)1 2 2 1 2

To complete the proof, we will derive a contradiction to (10). Towards this end,
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¯ ¯notice that since (x , x ) belongs to the convex hull of hA, B, Cj, by considering the1 2

line through points A and C, it follows that

¯ ¯¯b 2b ab 2 ab
] ]]¯ ]] ¯ ]]]x > x 1 .S D S D2 1¯ ¯a 2 a a 2 a

] ]
¯¯By multiplying both sides of this inequality by [(a 2 a ) /bb )] , 0 and rearranging

] ]
terms, we obtain

¯ ¯1 a a 1 a a
] ]] ¯ ] ¯ ] ] ¯ ] ¯ ]x 2 x 1 < x 2 x 1 .1 S D 2 1 2S D¯ ¯ ¯ ¯b bb bb bb b] ]] ]

By the definitions of h and h , this is equivalent to1 2

¯ ¯ ¯ ¯h (x , x ) < h (x , x ) .2 1 2 1 1 2

Therefore,

RC ¯ ¯ ¯ ¯f f (x , x ) 5 h (x , x ) .1 2 2 1 2

From (8),
RC¯ ¯w(x , x ) , f f (x , x ) .1 2 1 2

Taken together, that latter two relationships imply that

¯ ¯ ¯ ¯w(x , x ) , h (x , x ) .1 2 2 1 2

Since this contradicts (10), the proof is complete. h

The following is an immediate consequence of Theorem 2,

¯COROLLARY 1. Let a, a and f f(x , x ) be defined as in Theorem 2. Consider the1 2]
horizontal line segment S given by

2 ¯S 5 h(x , x ) [ 5 u a < x < a, x 5 bj ,1 2 1 2]

where b [ 5.
S¯(i) If either a, b . 0 or a, b , 0, then for all (x , x ) [ S, f f (x , x ) 5 f f(x , x ).1 2 1 2 1 2]

¯(ii) If either a , 0, b . 0 or a . 0, b , 0, then for all (x , x ) [ S, f f (x , x ) 51 2 S 1 2]
f f(x , x ).1 2

3. Prototype Algorithm

To search for a global optimal solution for problem (P ), the prototype algorithmH

uses a branch and bound procedure. There are two fundamental processes in this
procedure, a branching process and an upper bounding process.

The branching process in the prototype algorithm iteratively subdivides the
rectangle H into subrectangles. This branching process helps the algorithm identify
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a location in the feasible region Z(H ) of problem (P ) that contains a global optimalH

solution to the problem.
During each iteration of the algorithm, the branching process creates a more

n1refined partition of a portion of H 5 H that cannot yet be excluded from
consideration in the search for a global optimal solution for problem (P ). TheH

1initial partition PR consists simply of H .1

During iteration k of the algorithm, k > 1, the branching process is used to help
create a new partition PR . First, a screening procedure is used to remove anyk11

rectangles from P that can, at this point of the search, be excluded from furtherk

consideration, and PR is temporarily set equal to the set of rectangles thatk11
kremain. Later in iteration k, a rectangle H in PR is identified for furtherk11

kexamination. The branching process is then invoked to subdivide H into two
2k 2k11 2ksubrectangles H , H . The only assumption in the branching process is that H

2k11 k kand H create a partition of H , i.e., that their union is H and they intersect only
1on their relative boundaries [14]. The new partition PR of the portion of Hk11

remaining under consideration is then given by

k 2k 2k11PR 5 (PR \hH j) < hH , H j .k11 k11

The second fundamental process in the prototype algorithm is the upper bounding
1 1ˆ ˆprocess. Given H 5 H or a subrectangle H of H , it is assumed that the upper

bounding process can accomplish two things. First, it is assumed to be able to
ˆcompute an upper bound UB(H ) for the optimal objective function value v of theĤ

sum of ratios problem

p
ti
](P ) v 5 max OĤ Ĥ sii51

s.t. n (x) 2 t > 0 , i 5 1, 2, . . . , p ,i i

2d (x) 1 s > 0 , i 5 1, 2, . . . , p ,i i

ˆx [ X, (t, s) [ H

ˆ ˆthat satisfies UB(H ) 5 2` when the feasible region Z(H ) of problem (P ) is empty.Ĥ

Second, the upper bounding process is assumed to be capable of identifying a
ˆ ˆ ˆdistinguished point v(H ) in Z(H ) when Z(H ) ± 5.

We may state the prototype branch and bound algorithm for globally solving
problem (P ) as follows.H

3.1. PROTOTYPE ALGORITHM

1 1 1 1ˆ ˆStep 0 (Initialization): Let H 5 H 5 H . If a feasible solution (x , t , s ) [ Z(H ) is
1 1 1¯¯ ¯available, let (x , t , s ) denote the available feasible solution of maximum

objective function value in problem (P ), and letĤ
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p 1t̄ i1 ]v 5 O . (11)1s̄i51 i

1 1 1 1¯¯ ¯Otherwise, let h(x , t , s )j 5 5, and let v 5 E, where E [ [2`, `) is a
ˆlower bound for v in problem (P ). Compute an upper bound UB(H ) forˆ ˆH H

1v . Set PR 5 hH j and k 5 1.Ĥ 1

Step 1 (Screening): Set

kˆ ˆR 5 hH [ PR u UB(H ) . v j ,k k

and set

ˆ ˆPR 5 hH [ PR u H [ R j .k11 k k

Step 2 (Termination Criterion): If R 5 5, then terminate. Problem (P ) is infeasiblek H
k k k k¯¯ ¯if v 5 E. Otherwise, (x , t , s ) is a global optimal solution for problem

(P ).H
kStep 3 (Branching): Let H [ R satisfyk

k ˆ ˆH [ argmaxhUB(H ) u H [ R j .k

k 2k 2k11Partition H into two subrectangles H , H .
Step 4 (New Partition): Let

k 2k 2k11PR 5 (PR \hH j) < hH , H j .k11 k11

ˆ ˆStep 5 (Evaluation): Set k 5 k 1 1. For each H [ PR , determine UB(H ) and, ifk
ˆ ˆ ˆZ(H ) ± 5, determine the distinguished point v(H ) [ Z(H ).

k k k k21 k21¯ ¯¯ ¯ ¯Step 6 (Incumbent): Define (x , t , s ) to be the point that, among (x , t ,
k21 ˆs̄ ) and all points v(H ) found in Step 5, maximizes the objective function

value in problem (P ). LetH

p kt̄ ik ]v 5 O (12)ks̄i51 i

and go to Step 1.

kFor each k > 1, the value v provides a lower bound for the optimal value v ofH
k k k¯¯ ¯problem (P ), and the point (x , t , s ) [ Z(H ) such that (11) or (12) holds is calledH

the incumbent solution. Notice for each k > 1 that the screening process eliminates
kˆ ˆrectangles H from further consideration for which UB(H ) < v .

By the construction of the algorithm, when the algorithm is finite, it either finds a
global optimal solution for problem (P ) or detects that problem (P ) is infeasible.H H

It is also possible for the algorithm to be infinite. The following definition and result
help to analyze this case.
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DEFINITION 2. The prototype algorithm for problem (P ) is said to be convergentH
kif it is infinite and lim v 5 v or if it is finite.k→` H

PROPOSITION 1. If the prototype algorithm for problem (P ) is infinite andH
k k k `¯¯ ¯convergent, then any accumulation point of h(x , t , s jj is a global optimalk51

solution for problem (P ).H

Proof. Suppose that the prototype algorithm for problem (P ) is infinite andH

convergent. Then, by (11)–(12) and the definition of convergence,

p kt̄ ik ]lim v 5lim O (13)S Dk
k→` k→` s̄i51 i

5 v . (14)H

k k k `¯ ¯¯ ¯ ¯ ¯Let (x, t, s ) be an accumulation point of h(x , t , s j . Then for some K #k51

h1, 2, . . .j,

k k k¯ ¯¯ ¯ ¯ ¯lim(x , t , s ) 5 (x, t, s ) . (15)
k[K

By (13)–(14), since

p kt̄ i
]OH Jks̄i51 i k[K

is a subsequence of

`p kt̄ i
]O ,H Jks̄i51 i k51

(16)
p kt̄ i
]lim O 5 v .S Dk H

k[K s̄i51 i

From (15) and the continuity of the objective function of problem (P ) over H,H

p pk¯ ¯t ti i
] ]lim O 5 O . (17)S Dk s̄k[K s̄ ii51 i51i

From (16) and (17),

p
t̄i
]O 5 v . (18)Hs̄ii51

¯¯ ¯By (15), since the feasible region Z(H ) of problem (P ) is a closed set, (x, t, s ) [H

¯¯ ¯Z(H ). Together with (18), this implies that (x, t, s ) is a global optimal solution for
problem (P ). hH
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4. Two Implementations

To implement the prototype algorithm of Section 3 in ways that yield convergent
algorithms for problem (P ), the upper bounding and branching processes of theH

prototype algorithm must be implemented appropriately. In this section, we describe
two of the convergent algorithms that can be obtained from the prototype algorithm
in this way. These two algorithms use the same upper bounding process, but
different branching processes.

4.1. THE UPPER BOUNDING PROCESS

ˆLet H denote either H or a subrectangle of H that is generated by the prototype
ˆalgorithm. Then H may be written

ˆ ˆ ˆ ˆH 5 H 3 H 3 ? ? ? 3 H , (19)1 2 p

where, for each i 5 1, 2, . . . , p,

2ˆ ˆ ˆ ˆˆH 5 h(t , s ) [ 5 u l < t < u , L < s < U j .i i i i i i i i i

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆHere, l , u , L and U are positive scalars such that l < u , L < U , i 5 1, 2, . . . , p,i i i i i i i i
ˆ ˆand, for at least one i [ h1, 2, . . . , pj, L , U . For each i [ h1, 2, . . . , pj, leti i

ti
]f f (t , s ) 5 (20)i i i si

ˆ ˆ ˆfor all (t , s ) [ H . Then, for each i 5 1, 2, . . . , p, by Theorem 2, since l , L . 0, thei i i i i
Ĥi ˆconcave envelope f f of f f on H is given byi i i

ˆ ˆ ˆ ˆl l u u1 1ˆ i i i iHi ] ]] ] ] ]] ]f f (t , s ) 5 min t 2 s 1 , t 2 s 1 . (21)H S D Ji i i i i i iS Dˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆL L U U U L U Li i i i i i i i

ĤBy Theorem IV. 8 in [14] and (19), (20), the concave envelope g (t, s) of
n p ˆ ˆg(t, s) 5 o t /s on H is then given, for each (t, s) [ H, byi51 i i

p
ˆ ˆH Hig (t, s) 5 O f f (t , s ) . (22)i i i

i51

ˆTo calculate an upper bound UB(H ) for v , the upper bounding process maximizesĤ
Ĥ ˆthe concave envelope g (t, s) of g(t, s) over the feasible region Z(H ) of problem

(P ). To accomplish this, the convex programming problem (PUB ) given byˆ ˆH H

p

(PUB ) max O rĤ i
i51

s.t.
ˆ ˆl l1 i i

] ]] ]r < t 2 s 1 , i 5 1, 2, . . . , p ,S Di i iˆ ˆ ˆ ˆL L U Ui i i i
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ˆ ˆu u1 i i
] ]] ]r < t 2 s 1 , i 5 1, 2, . . . , p ,i i iS Dˆ ˆ ˆ ˆU L U Li i i i

n (x) 2 t > 0 , i 5 1, 2, . . . , p ,i i

2d (x) 1 s > 0 , i 5 1, 2, . . . , p ,i i

ˆx [ X , (t, s) [ H ,

ˆis solved, and UB(H ) is set equal to the optimal value of this problem. From
Ĥ(21)–(22), this optimal value does, in fact, equal the maximum of g (t, s) over

ˆ ˆ ˆ ˆZ(H ). When Z(H ) is empty, UB(H ) is set equal to 2`. When Z(H ) is not empty, the
upper bounding process chooses any optimal solution found for problem (PUB ) asĤ

ˆthe distinguished point v(H ).

4.2. TWO BRANCHING PROCESSES

kˆWithout loss of generality, let H denote a rectangle H that is to be partitioned into
two subrectangles by the branching process of the prototype algorithm, where k > 1

ˆand H is defined as in Section 4.1. At least two suitable branching processes are
available. These processes are adaptations of two common branching processes from

2pˆglobal optimization [30]. In both processes, although H # 5 , the branching
process takes place in a space of only dimension p.

4.2.1. Bisection of Ratio a

Let a be a prechosen parameter that satisfies 0.0 , a < 0.5. The procedure for
ˆ ˆ ˆforming a bisection of ratio a of H into two subrectangles H 9 and H 0 is as follows.

ˆ ˆ ˆ ˆStep 1: Let (U 2 L ) 5 max hU 2 L j.j j i51,2,..., p i i

Step 2: Let v satisfyj

ˆ ˆ ˆ ˆminhv 2 L , U 2 v j 5 a(U 2 L ) . (23)j j j j j j

Step 3: Let
2ˆ ˆ ˆ9 ˆH 5 h(t , s ) [ 5 u l < t < u , L < s < v j ,j j j j j j j j j

2ˆ ˆ ˆ0 ˆH 5 h(t , s ) [ 5 u l < t < u , v < s < U j .j j j j j j j j j

Step 4: Let

ˆ ˆ ˆ ˆ ˆ ˆ ˆ9H 9 5 H 3 H 3 ? ? ? 3 H 3 H 3 H 3 ? ? ? 3 H ,1 2 j21 j j11 p

ˆ ˆ ˆ ˆ ˆ ˆ ˆ0H 0 5 H 3 H 3 ? ? ? 3 H 3 H 3 H 3 ? ? ? 3 H .1 2 j21 j j11 p

Notice from (23) that when a , 0.5, the ratio of the length of the smaller of the
ˆ ˆ ˆ9 0two edges in H and H that correspond to s to the length of the edge of H thatj j j j

corresponds to s is a. When a 5 0.5, the bisection of ratio a is accomplished byj
ˆ ˆ ˆ ˆbisecting the interval [L , U ] at its midpoint v 5 0.5(L 1 U ).j j j j j
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4.2.2. The v-Subdivision Rule
ˆ ˆˆ ˆLet v(H ) 5 (x, t, s ) be the distinguished point determined by the prototype

kˆalgorithm for the rectangle H 5 H . For each i 5 1, 2, . . . , p, recall that the concave
Ĥi ˆ ˆenvelope f f of f f on H is given by (21). The procedure for subdividing H intoi i i

ˆ ˆtwo subrectangles H 9 and H 0 by v-subdivision is as follows.

Step 1: Let

Ĥi ˆ ˆˆ ˆu 5 max h f f (t , s ) 2 f f (t , s )j .j i i i i i i
i51,2,..., p

Step 2: Let

2ˆ ˆ ˆ9 ˆ ˆH 5 h(t , s ) [ 5 u l < t < u , L < s < s j ,j j j j j j j j j

2ˆ ˆ ˆ0 ˆ ˆH 5 h(t , s ) [ 5 u l < t < u , s < s < U j .j j j j j j j j j

Step 3: Let

ˆ ˆ ˆ ˆ ˆ ˆ ˆ9H 9 5 H 3 H 3 ? ? ? 3 H 3 H 3 H 3 ? ? ? 3 H ,1 2 j21 j j11 p

ˆ ˆ ˆ ˆ ˆ ˆ ˆ0H 0 5 H 3 H 3 ? ? ? 3 H 3 H 3 H 3 ? ? ? 3 H .1 2 j21 j j11 p

ˆThe v-subdivision rule attempts to subdivide H in such a way so as to maximize the
ˆ ˆimprovement in the quality of the concave envelope overestimations for H 9 and H 0

ˆas compared to that for H.
Notice that both bisection of ratio a and v-subdivision yield branching processes

for the prototype algorithm that, at each iteration, subdivide an interval [L , U ] thatj j

is associated with a denominator s of problem (P ). Thus, these branchingj H

processes never subdivide any of the intervals [l , u ], i 5 1, 2, . . . , p, that arei i

associated with the numerators t , i 5 1, 2, . . . , p, of problem (P ).i H

4.3. TWO ALGORITHMS AND CONVERGENCE

We will refer to the algorithm obtained by executing the upper bounding and
branching processes of the prototype algorithm by the bounding process given in
Section 4.1 and by bisection of ratio a, respectively, as the Bisection Algorithm.
Similarly, we will refer to the algorithm obtained by executing the upper bounding
and branching processes of the prototype algorithm by the bounding process given
in Section 4.1 and by the v-subdivision rule, respectively, as the Omega Algorithm.
The main goal of this section is to show that the Bisection and Omega Algorithms
are convergent in the sense of Definition 2.

4.3.1. Convergence of the Bisection Algorithm
Notice that when the Bisection Algorithm is infinite, since h1, 2, . . . , pj is finite,

q ` 2pthere exists an infinite sequence hH j of rectangles in 5 generated by theq51
q11 q q11 qalgorithm such that for each q 5 1, 2, . . . , H , H and H is formed from H
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by the bisection of ratio a process, where, in step 1 of this process, for some fixed
j [ h1, 2, . . . , pj,0

q q q q(U 2 L ) 5 max hU 2 L j ,j j i i0 0 i51,2,..., p

2p q q q q qwhere h(t, s) [ 5 u l < t < u , L < s < U , i 5 1, 2, . . . , pj 5 H for each q.i i i i i i
q `Assume in the next result that hH j is a sequence of rectangles of this type, and,q51

for each q and each i [ h1, 2, . . . , pj, let

q 2 q q q qH 5 h(t , s ) [ 5 u l < t < u , L < s < U j .i i i i i i i i i

LEMMA 1. For some subsequence Q of h1, 2, . . .j, the limit rectangle

` qH 5> Hj j0 0q[Q

2is a line segment in 5 parallel to the t -axis.j0

Proof. By Lemma 5.4 in [30] and the bisection of ratio a rule, there exists a
subsequence Q of h1, 2, . . .j such that

qlim L 5 L [ 5 ,j j0 0q[Q

qlim U 5 U [ 5 ,j j0 0q[Q

and
q ¯lim v 5 v [ hL , U j ,j j j0 0 0q[Q

qwhere, for each q [ Q, v denotes the point v chosen in step 2 of the bisection ofj j0 0

¯ ¯ ¯ratio a rule. Therefore, v 5 L or v 5 U . In either case, v [ 5 is a single point, soj j0 0

that

` qH 5> Hj j0 0q[Q

q q ¯5 h(t , s ) u l < t < u , s 5 v j ,j j j j j j0 0 0 0 0 0

2which is a line segment in 5 parallel to the t -axis. hj 0

q `THEOREM 3. Suppose that the Bisection Algorithm is infinite, and let hH jq51
2pdenote a sequence of rectangles in 5 generated by the algorithm such that for

q11 qeach q 5 1, 2, . . . , H , H . Then, for some subsequence Q of h1, 2, . . .j,
p qt̄ iq ]lim UB(H ) 2 O 5 0 .F q G

q[Q s̄i51 i

q `Proof. Since hH j is infinite, by steps 1 and 2 of the Bisection Algorithm, weq51
qmay choose a subsequence Q of h1, 2, . . .j such that for each q [ Q, UB(H ) ± 2`.

q qBecause hH j is infinite, we may assume without loss of generality that hH jq[Q q[Q
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q `has the properties of the sequence hH j of Lemma 1. For each q [ Q, sinceq51
qUB(H ) ± 2 `, the upper bounding process implies that

qH q q qg (t , s ) 5 UB(H ) , (24)
qH p qwhere g denotes the concave envelope of g(t, s) 5 o t /s over H , andi51 i i

q q q q q
v(H ) 5 (x , t , s ) is the distinguished point corresponding to H chosen by the

q q qupper bounding process. For each q, since v(H ) [ Z(H ), Z(H ) ± 5. By repeated
application of Lemma 1, we may assume without loss of generality that

nq ` ` ` `lim H 5 H 3 H 3 ? ? ? 3 H 5 H , (25)1 2 p
q[Q

` 2where, for each i 5 1, 2, . . . , p, H # 5 is a line segment parallel to the t -axis.i i

For each q [ Q,
qq HUB(H ) 5 max g (t, s)

q(x,t,s)[Z(H )

> vH

q q¯ ¯> g(t , s ) (26)
q q

> g(t , s ) , (27)
q qwhere the first equation follows, since Z(H ) ± 5, from the definition of UB(H ) in

the upper bounding process, the first inequality follows from step 3 of the Bisection
Algorithm and the validity of the upper bounding process, the second inequality

q q q q¯¯ ¯follows because (x , t , s ) [ Z(H ), and the third inequality holds by the choice of
the incumbent solution in step 6 of the Bisection Algorithm. For each q [ Q,

q q q q q(t , s ) [ H # H. Therefore, h(t , s )j has a convergent subsequence, and, byq[Q
`(25), the limit point of this subsequence lies in H . Assume without loss of

generality that
q q `¯ ¯lim(t , s ) 5 (t, s ) [ H . (28)

q[Q

By the continuity of g on H, this implies that
q q ¯ ¯lim g(t , s ) 5 g(t, s ) . (29)

q[Q

q q qSince (t , s ) [ H for all q [ Q, by using (28), Theorem 2(i) and Corollary 1, it can
be seen that

qH q q ¯ ¯lim g (t , s ) 5 g(t, s ) . (30)
q[Q

Combining (24), (26), (27), (29) and (30), we obtain
q q q¯ ¯ ¯¯ ¯ ¯g(t, s ) 5lim UB(H ) 5lim g(t , s ) 5 g(t, s ) .

q[Q q[Q

q q p q q¯ ¯¯ ¯Since for each q [ Q, g(t , s ) 5 o t /s , this completes the proof. hi51 i i

COROLLARY 2. The Bisection Algorithm is convergent.
Proof. Suppose that the Bisection Algorithm is infinite. Then, as noted previous-
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ly, we may choose a sequence of rectangles, which we denote without loss of
q ` q11 q q11generality by hH j , such that for each q 5 1, 2, . . . , H , H and H isq51

qformed from H by the bisection of ratio a process. By the validity of the upper
bounding process and steps 3 and 6 of the algorithm, for each q 5 1, 2, . . . ,

q q11 q11 q q q¯ ¯¯ ¯UB(H ) > v > g(t , s ) > g(t , s ) 5 v , (31)H

q `and hv j is a nondecreasing sequence of real numbers. By Theorem 3, for someq51

Q # h1, 2, . . .j,
q q q¯ ¯lim UB(H ) 5lim g(t , s ) .

q[Q q[Q

From (31), this implies that
q qlim UB(H ) 5 v 5lim v .H

q[Q q[Q

q ` qSince hv j is a nondecreasing sequence, this implies that lim v 5 v . hq51 q→` H

From Corollary 2 and Proposition 1, whenever the Bisection Algorithm is infinite,
k k k `¯ ¯¯ ¯ ¯ ¯any accumulation point (x, t, s ) of the sequence h(x , t , s )j that it generates is ak51

¯global optimal solution for problem (P ). From Theorem 1, x is then a globalH

optimal solution for problem (P).

4.3.2. Convergence of the Omega Algorithm
For the Omega Algorithm, counterparts to Lemma 1, Theorem 3, and Corollary 2
hold. The proofs of these results, except for the proof of the counterpart of Theorem
3, are virtually identical to the proofs for the case of the Bisection Algorithm. In the
interest of brevity, these results are not shown here. Together, however, they imply
that the Omega Algorithm is convergent and, by Proposition 1, whenever it is

k k k `¯ ¯¯ ¯ ¯ ¯infinite, any accumulation point (x, t, s ) of the sequence h(x , t , s )j that itk51

¯generates is a global optimal solution for problem (P ). From Theorem 1, x is then aH

global optimal solution for problem (P).

5. Computational Issues and Solved Examples

There are at least three computational issues that may arise in using either of the two
suggested implementations of the prototype algorithm.

The first computational issue concerns step 2 of the prototype algorithm, the
termination criterion. In practice, even after many iterations, R may remaink

nonempty. However, by the convergence results, it follows that for any e . 0,

p kt̄ ik ]UB 2 O < e (32)S Dks̄i51 i

will hold for k sufficiently large. In practice, it is recommended that the algorithms
be terminated if, for some prechosen, relatively-small value of e . 0, (32) holds.
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k¯When termination occurs in this way, it is easy to show that x is a global e-optimal
solution and h(x*) is a global e-optimal value for problem (P) in the sense that
x* [ X and

h(x*) 1 e > v .

The second computational issue concerns the upper bounding process. From
Section 4.1, each upper bound in the algorithms is computed by solving a nonlinear,
convex program of the form of problem (PUB ). These problems differ from oneĤ

another only in the coefficients of 2p linear constraints and in the bounds for
2p(t, s) [ 5 . Therefore, an optimal solution to one problem can potentially be used

to good advantage as a starting solution to the next problem. The ability to
implement this idea will depend upon the particular convex programming algorithm
and code used to solve these problems.

The third computational issue concerns the assumption for problem (P) that for
each i 5 1, 2, . . . p, positive scalars l , u , L and U are available such that for alli i i i

x [ X, l < n (x) < u and L < d (x) < U , i 5 1, 2, . . . , p. In some cases, thesei i i i i i

scalars may not be available but, rather, must be computed or estimated. For each
i 5 1, 2, . . . , p, the computation of u and L can be accomplished by maximizingi i

n (x) over X and minimizing d (x) over X, respectively. Since these computationsi i

involve solving convex programs, they are not problematical. However, for each
i 5 1, 2, . . . , p, finding values for l and U , if they are not readily available, willi i

require a different approach. Of course, for each i 5 1, 2, . . . , p, if n (x) and d (x) arei i

linear functions and X is a polytope, these values can be found by solving 2p linear
programming problems. In other cases, a special procedure may be needed. One
such procedure, which is based upon convex programming, is given in [4].

We have coded the Omega Algorithm and used it to globally solve a number of
sample problems (P). The code was written in the AMPL language [10], where we
chose the MINOS solver [24] to solve the convex upper bounding subproblems. The
AMPL code uses the optimal solution of each convex upper bounding problem to
help to provide a good starting solution for the next problem. The sample problems
were solved with the code on a Pentium II, 400 MHz personal computer.

Below we describe some of these sample problems and solution results. In each
case, the feasible regions were small enough so that for each i 5 1, 2, . . . , p, l andi

U were found by extreme point search. Global e-optimal solutions and e-optimali

values are given to the nearest one-hundredth.

EXAMPLE 1. In this example p 5 n 5 2. The numerator and denominator functions
2are given for each (x , x ) [ 5 by1 2

2 2n (x , x ) 5 2x 1 3x 2 x 1 3x 1 3.5 ,1 1 2 1 1 2 2

n (x , x ) 5 x ,2 1 2 2

d (x , x ) 5 x 1 1.0 ,1 1 2 1

2 2d (x , x ) 5 x 2 2x 1 x 2 8x 1 20.0 ,2 1 2 1 1 2 2
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2and X consists of all (x , x ) [ 5 that satisfy the inequalities1 2

2x 1 x < 6 ,1 2

3x 1 x < 8 ,1 2

x 2 x < 1 ,1 2

x , x > 1 .1 2

With e 5 0.001, the algorithm found the global e-optimal solution (x , x ) 5 (1.00,1 2

1.74) with global e-optimal value v 5 4.06 after 17 iterations. The MINOS code’s
total subproblem solution time was 0.62 s. The initial upper bound was 4.33, and the
e-optimal value v was discovered during iteration number 9.

EXAMPLE 2. In this example, p 5 2 and n 5 3. The numerator and denominator
3functions are given for each (x , x , x ) [ 5 by1 2 3

2 2 2n (x , x , x ) 5 2x 1 4x 2 2x 1 8x 2 3x 1 12x 1 56 ,1 1 2 3 1 1 2 2 3 3

2 2n (x , x , x ) 5 22x 1 16x 2 x 1 8x 1 2 ,2 1 2 3 1 1 2 2

2 2d (x , x , x ) 5 x 2 2x 1 x 2 2x 1 x 1 20 ,1 1 2 3 1 1 2 2 3

d (x , x , x ) 5 2x 1 4x 1 6x ,2 1 2 3 1 2 3

and
3X 5 h(x , x , x ) [ 5 u x 1 x 1 x < 10, 2x 2 x 1 x < 4, x > 1, j 5 1, 2, 3j .1 2 3 1 2 3 1 2 3 j

With e 5 0.01, a global e-optimal solution (x , x , x ) 5 (1.81, 1.00, 1.00) with1 2 3

e-optimal value v 5 6.12 was found after 24 iterations of the algorithm. The MINOS
code’s total subproblem solution time was 1.00 s. The initial upper bound was 7.36,
and the e-optimal value v was discovered during iteration number 2.

EXAMPLE 3. In this example, p 5 3 and n 5 4. The numerator and denominator
4functions on 5 are given by

4
2n (x , x , x , x ) 5 O 2x 1 16x 2 214 ,S D1 1 2 3 4 j j

j51

2 2 2 2n (x , x , x , x ) 5 2x 1 16x 2 2x 1 20x 2 3x 1 60x 2 4x 1 56x2 1 2 3 4 1 1 2 2 3 3 4 4

2 586 ,
4

2n (x , x , x , x ) 5 O 2x 1 20x 2 324 ,S D3 1 2 3 4 j j
j51

d (x , x , x , x ) 5 2x 2 x 2 x 1 x 1 2 ,1 1 2 3 4 1 2 3 4

d (x , x , x , x ) 5 2x 1 x 1 x 2 x 1 10 ,2 1 2 3 4 1 2 3 4

2d (x , x , x , x ) 5 x 2 4x ,3 1 2 3 4 1 4

4and X consists of all (x , x , x , x ) [ 5 such that1 2 3 4
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6 < x < 10 ,1

4 < x < 6 ,2

8 < x < 12 ,3

6 < x < 8 ,4

x 1 x 1 x 1 x < 34 .1 2 3 4

With e 5 0.01, the algorithm found the global e-optimal solution (x , x , x , x ) 51 2 3 4

(6.00, 6.00, 10.06, 8.00) with global e-optimal value v 5 16.17 after 37 iterations.
The MINOS code’s total subproblem solution time was 2.06 s. The initial upper
bound was 27.04, and the e-optimal value was discovered in iteration number 24.

We caution that while these examples may seem, in a very preliminary way, to
indicate the potential viability of the Omega Algorithm for globally solving problem
(P), considerable additional computational tests will be needed to draw precise
conclusions concerning the computational capabilities of this algorithm (or of the
Bisection Algorithm).

6. Concluding Remarks

Two versions of a branch and bound algorithm for globally solving the nonlinear
sum of ratios problem (P) have been presented. In both algorithms, the branch and

2pbound search creates rectangular regions that belong to 5 , where p is the number
of ratios in the objective function of problem (P). However, the branching process in

p 2pboth algorithms takes place in 5 , rather than 5 . In addition, the upper bounding
subproblems in these two algorithms are convex programming problems that are
quite similar to one another. These characteristics of the two algorithms offer
computational advantages that can enhance the efficiencies of the algorithms. It is
hoped that these algorithms and the ideas used to create these algorithms will offer
useful tools for solving nonlinear sums of ratios problems.

Acknowledgement

The author gratefully acknowledges the helpful comments of an anonymous referee
regarding an earlier draft of this article.

References

1. Almogy, Y. and Levin, O. (1970), Parametric analysis of a multi-stage stochastic shipping
problem, Operational Research ’69, Tavistok Publications, London.

2. Benson, H.P. (1996), Deterministic algorithms for constrained concave minimization: a
unified critical survey, Naval Research Logistics 43: 765–795.

3. Benson, H.P. (2001), On the construction and utilization of convex and concave envelopes of
bilinear and fractional functions, Working Paper, Department of Decision and Information
Sciences, University of Florida, Gainesville, FL.

4. Benson, H.P. (1999), An outcome space branch and bound outer-approximation algorithm for
convex multiplicative programming, Journal of Global Optimization 15: 315–342.



TO GLOBALLY SOLVE THE NONLINEAR SUM OF RATIOS PROBLEM 363

5. Benson, H.P. (1990), Separable concave minimization via partial outer approximation and
branch and bound, Operations Reserch Letters 9: 389–394.

6. Cambini, A., Martein, L. and Schaible, S. (1989), On maximizing a sum of ratios, Journal of
Information and Optimization Sciences 10: 65–79.

7. Colantoni, C.S., Manes, R.P. and Whinston, A. (1969), Programming, profit rates and pricing
decisions, The Accounting Review 44: 467–481.

8. Dur, M., Horst, R. and Thoai, N.V. (2001), Solving sum-of-ratios fractional programs using
efficient points, Optimization, to appear.

9. Falk, J.E. and Palocsay, S.W. (1994), Image space analysis of generalized fractional programs,
Journal of Global Optimization 4: 63–88.

10. Fourer, R., Gay, D.M. and Kernighan, B.W. (1993), AMPL, a Modeling Language for
Mathematical Programming, Boyd and Fraser Publishing Company, Danvers, MA.

11. Freund, R. and Jarre, F. (2001), Solving the sum-of-ratios problem by an interior point
method, Journal of Global Optimization 19: 83–102.

12. Gallo, G. and Ulkucu, A. (1977), Bilinear programming: an exact algorithm, Mathematical
Programming 12: 173–194.

13. Horst, R. and Pardalos, P.M. (eds) (1995), Handbook of Global Optimization, Kluwer
Academic Publishers, Dordrecht, The Netherlands.

14. Horst, R. and Tuy, H. (1993), Global Optimization: Deterministic Approaches, Springer
Verlag, Berlin.

15. Kalantari, B. and Rosen, J.B. (1987), An algorithm for global minimization of linearly
constrained concave quadratic functions, Mathematics of Operations Research 12: 544–561.

16. Konno, H. and Abe, N. (1999), Minimization of the sum of three linear fractional functions,
Journal of Global Optimization 15: 419–432.

17. Konno, H. and Fukaishi, K. (2000), A branch and bound algorithm for solving low rank linear
multiplicative and fractional programming problems, Journal of Global Optimization 18:
283–299.

18. Konno, H. and Inori, M. (1989), Bond portfolio optimization by bilinear fractional program-
ming, Journal of the Operations Research Society of Japan 32: 143–158.

19. Konno, H., Kuno, T. and Yajima, Y. (1994), Global minimization of a generalized convex
multiplicative function, Journal of Global Optimization 4: 47–62.

20. Konno, H. and Watanabe, H. (1996), Bond portfolio optimization problems and their
application to index tracking: a partial optimization approach, Journal of the Operations
Research Society of Japan 39: 295–306.

21. Konno, H., Yajima, Y. and Matsui, T. (1991), Parametric simplex algorithms for solving a
special class of nonconvex minimization problems, Journal of Global Optimization 1: 65–81.

22. Konno, H. and Yamashita, H. (1999), Minimizing sums and products of linear fractional
functions over a polytope, Naval Research Logistics 46: 583–596.

23. Kuno, T. (2000), A branch-and-bound algorithm for maximizing the sum of several linear
ratios, University of Tsukuba, Research Report ISE-TR-00-175, Tsukuba, Japan.

24. Murtagh, B.A. and Saunders, M.A. (1998), MINOS 5.5 User’s Guide, Stanford University,
Technical Report SOL 83-20R, Stanford, CA.

25. Quesada, I. and Grossman, I. (1995), A global optimization algorithm for linear fractional and
bilinear programs, Journal of Global Optimization 6: 39–76.

26. Rosen, J.B. and Pardalos, P.M. (1986), Global minimization of large-scale constrained
concave quadratic problems by separable programming, Mathematical Programming 34:
163–174.

27. Schaible, S. (1995), Fractional programming, in: R. Horst and P.M. Pardalos (eds), Handbook
of Global Optimization, Kluwer Academic Publishers, Dordrecht, The Netherlands, 495–608.

28. Schaible, S. (1994), Fractional programming with sums of ratios, University of Pisa, Report
No. 83, Pisa, Italy.



364 HAROLD P. BENSON

29. Schaible, S. (1977), A note on the sum of a linear and linear-fractional function, Naval
Research Logistics Quarterly 24: 691–693.

30. Tuy, H. (1998), Convex Analysis and Global Optimization, Kluwer Academic Publishers,
Dordrecht, The Netherlands.


